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Prolonged and/or extreme heat has become a natural hazard that presents a significant risk to humans and the
buildings, technologies, and infrastructure on which they have previously relied on to provide cooling. This paper
presents a conceptual model of a resilient cooling system centred on people, the socio‐cultural‐technical contexts
they inhabit, and the risks posed by the temperature hazard. An integrative literature review process was used
to undertake a critical and comprehensive evaluation of published research and grey literature with the objective
of adding clarity and detail to the model. Two databases were used to identify risk management and natural hazard
literature in multiple disciplines that represent subcomponents of community resilience (social, economic, institu-
tional, infrastructure and environment systems). This review enabled us to characterise in more detail the nature of
the temperature hazard, the functionality characteristics of a resilient cooling system, and key elements of the four
subsystems: people, buildings, cooling technologies and energy infrastructure. Six key messages can be surmised
from this review, providing a guide for future work in policy and practice.
Key concepts
Antecedent
conditions
The social, economic, infrastructural,
institutional, community and environmental
components that determine how a community
can cope with, and recover from, hazards and
the risks posed by hazards. These components,
collectively and individually, are not in an
equilibrium state.
Build Back
Better
Reconstruction and recovery practices that focus
on implementing positive social change and
improving community resilience capacity
Cost‐benefit
 A traditional cost‐benefit analysis, applied to
analysis
 disaster risk management, compares the costs of
an action against the benefits of avoided losses
from that action. It relies, for example, on
probabilistic estimation of risk and losses,
and the application of a monetised value on
benefits attributed to the actions.
Post‐recovery
activities
Actions imposed after a crisis that enhance
community preparedness and reduce exposure
to the hazard or the severity of impact of the
hazard. Cost‐benefit analysis is often used as the
decision process for determining investment
decisions in mitigation and recovery
actions.
Resilience
capacity
The continuing function of a system within the
context of change and instability (a non‐
equilibrium state).
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Resilience
dividend
An investment, planning and practice strategy
that is an alternative to (or an expansion and
extension of) the more familiar cost‐benefit
analysis. It specifically targets risk management
investment actions that provide tangible and
intangible co‐benefits in times of crisis and non‐
crisis. It is not restricted by either the probability
of future risks, or the monetised value of
benefits.
Fig. 1. Impact of changes to temperature mean and variance. Source: Ref.
[17], page 155
NOTE: The terms reliability, resilience, robustness and redundancy are
deliberately not defined in this table. The paper describes how different dis-
ciplines utilise these words within the context of the system being studied in
this paper. The purpose of this paper is not to arrive at an agreed definition of
these terms or to argue that there is a need for agreement on terminology: the
focus of the paper is on providing a framework to describe the purpose and
function of a resilient cooling system.

1. Introduction

1.1. The context

The weather event in Texas, USA in February 2021 provides a good
example of how buildings, space heating equipment, and the energy
network failed to protect people from the extreme cold temperatures
(https://www.theguardian.com/us-news/2021/feb/20/texas-power-
grid-explainer-winter-weather). People, buildings, cooling equipment,
and energy systems are also vulnerable to heatwaves and extended
periods of hot weather. Some of the risks associated with these temper-
ature hazards include the possibility of overheating of buildings and
technology; equipment failure or reduced ability to provide cooling
services; insufficient electricity generation to meet demand; and
enforced power outages to protect transmission networks or reduce
secondary risks of bushfires.

Risks to humans include heat stress and high rates of morbidity and
mortality. For example, there were an estimated 1200 heatwave
related deaths in the USA for the period 2004–2013 [1]; heatwaves
have accounted for more deaths in Australia than all other natural haz-
ards, and modelling suggests significantly increased rates of morbidity
and mortality, and associated public health implications, by the mid-
dle of this century [2–4]; and Hajat et al. [5] predict that heat‐
related deaths due to climate change in the UK are expected to rise
by about 257% by the 2050s. This has led to the development of
national and regional heatwave plans and strategies in attempts to pre-
pare populations to anticipate and respond to the hazard and hence
reduce the associated risks posed by the hazard [6–9]. These responses
have typically included protective measures (e.g., warning systems
and advisory information) and adaptation strategies, but the efficacy
of such strategies is difficult to accurately evaluate due to the differ-
ences in hazard intensity, duration, and population exposure [10].

The efficacy of building regulations and product standards to pro-
tect building occupants is also under question, as the tools to evaluate
the effectiveness of these measures typically utilise historic climate
data and design parameters based on probability of exceedance of
pre‐determined temperature conditions (e.g., reliability or availability
figures) [11] and averages of occupant satisfaction (e.g., percentage of
persons dissatisfied) [12]. However, changes in mean temperature and
temperature distribution are resulting in more frequent hot weather
and record hot weather (Fig. 1), higher humidity, and worsening
ozone levels and air quality [13] and associated impacts on human
and ecosystem health [14–16].

1.2. The approach of this paper

Against this background, what is “resilient cooling”, the term
used by the International Energy Agency Annex 80: Resilient
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Cooling of Buildings [18]? Resilience of what? For whom? Against
what?

In this paper we present a conceptual model of a resilient cooling
system and conduct an integrative literature review to characterise
the hazard and risks; understand the desired functional state of the sys-
tem as a whole; and analyse key factors and indicators that apply to
different sub‐systems or components within the system. Our approach
is consistent with the view that resilience is a property of functions and
systems [19] and that there is a need to define the elements of
impacted physical and social systems [20]. Our approach is also novel
in that it extends previous discipline‐restricted system boundaries and
combines disparate views of core aspects and elements of system func-
tionality. Our approach uses the lenses of Disaster Risk Management
(DRM) (understanding and managing risks) and Natural Hazards
(NH) (vulnerability and resilience to risks posed by the hazard),
thereby incorporating both engineering and social science perspectives
into a framework to describe the purpose and function of a resilient
cooling system. It is not restricted by a perceived need to have consen-
sus of concept definitions [21], but rather embraces multiple defini-
tions of system performance concepts.
2. Methodology

2.1. Development of the model

Our proposed model for conceptualising the resilient cooling sys-
tem was developed through Annex 80 expert discussions and examina-
tion of existing disaster resilience frameworks. Our model, shown in
Fig. 2, is an extension of the Disaster Resilience of Place (DROP) model
[22] that provides a foundation for representing the relationship
between vulnerability and resilience; highlights the antecedent (pre‐
existing) conditions within communities that serve as a baseline set
of circumstances against which improvements in resilience can be
measured; and presents resilience as a process. The antecedent condi-
tions are determined by social, economic, infrastructural, institutional,
community and environmental components, and play a role in how a
community can cope with, and recover from, a hazard and the risks
posed by a hazard [23]. Post‐recovery activities lead to a ‘new’ state,
through actions that enhance preparedness for future events (thereby
reducing negative impact), or through actions that mitigate the hazard
or risks (such as reducing likelihood or severity). Post‐recovery actions
may include both preparedness and mitigation.

To this model we have explicitly incorporated the properties of
socio‐economic and engineered systems as contributors to a commu-
nity’s coping responses, and the complementary Sendai Framework
for Disaster Risk Reduction [24]. This United Nations framework,
endorsed by the UN General Assembly in 2015, views resilience as
both an outcome (the ability to cope with or bounce back from a haz-
ard) and a process (that is, continual learning and taking responsibility
for making better decisions to improve the capacity to handle haz-

https://www.theguardian.com/us-news/2021/feb/20/texas-power-grid-explainer-winter-weather
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Fig. 2. Conceptual model of the resilient cooling system.
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ards). Importantly it includes the concepts of social learning and
“Build Back Better” (reconstruction and recovery practices that focus
on implementing positive social change and improving community
resilience) [25], a similar concept to the resilience dividend (the term
used to describe the net benefit or cost of an investment in resilience,
in the absence of a disruptive event). It is an alternative approach to
the traditional return‐on‐investment mindset and assumption that
there will always be a financial trade‐off between adequate prepared-
ness and potential future disaster response and recovery costs [26,27].

The other very important addition to the DROPmodel is the concept
that our social, natural, and built environment systems are not an equi-
librium state, but in a state of constant change [28,29]. This means that
there is a need to highlight adaptive capacity and resilience capacity,
focusing on the continuing function of the system within the context
of change and instability, rather than a return to a pre‐existing equilib-
rium state or to a new equilibrium state [1,30–33]. This resilient cooling
system concept is then bounded by the United Nations’ Sustainable
DevelopmentGoals (SDGs) presentingaview that it is the universal right
of all people to be protected from, and enabled to protect themselves
from, the risks posed by the temperature hazard, and that any strategies
adopted to mitigate or adapt to the hazard support rather than under-
mine the SDGs. Goal 7 – affordable and clean energy – is particularly
important in the context of a resilient cooling system.
2.2. Integrative literature review

A critical and comprehensive evaluation of published research and
practice was undertaken with the objectives of (a) adding clarity and
detail to various components of this resilient cooling system; (b) high-
lighting the commonalities anddifferences in the termsusedbydifferent
disciplines to indicate resilience; and (c) inferring the implication of our
model for practice and policy. An integrative literature review process
was used as it allows for the inclusion of theoretical and empirical
research and perspectives fromdiverse sources tomore fully understand
complex phenomena [34]. A two‐stage search approach was conducted
using two databases (Science Direct and Scopus) for 1990 – 2019. In the
first stage, key search terms (disaster, exposure, hazard, resilience, risk,
and vulnerability) were applied to titles and abstracts to find literature
relating to the subcomponents of community resilience (social, eco-
3

nomic, institutional, infrastructure and environment) inferred in the
DROP model [15] and other community resilience frameworks, such
as Ref. [35]. Inclusion criteria included review papers and original
research papers relating to human preparedness for, and responses to,
hazards. Papers in languages other than English were excluded, unless
the co‐authors were fluent in the published language. The second stage
extended the search criteria by adding additional functionality key
words (suchas criteria, definition, evaluation, framework, index, indica-
tors, and metrics) and extending the inclusion criteria to incorporate
credible grey literature (such as disaster and hazard related reports by
international organisations and national governments) that might pro-
vide operational views and practices. The identified literature was then
read in full and screened for relevance to the scope of this paper (temper-
ature hazards, the need for cooling, and the systems on which cooling
relies). Data from the resultant literature were then extracted and coded
under three categories: (i) hazards and risk management; (ii) system
functionality; and (iii) key factors and indicators relevant to the system
or subsections of the system.

3. Characterising the hazard, risks and consequences

For the purposes of this paper, the term “temperature hazard” is
used to denote increases in high temperature frequency, duration
and magnitude that present a risk of overheating in buildings, threat-
ening human health, activities, and productivity.

3.1. Temperature hazard criteria

The temperature hazard encompasses the concepts of sudden per-
turbations (shocks to the system beyond normal variability, such as
heatwaves or sudden spikes in electricity demand) and slow or contin-
uous stressors to the system (for example, gradual changes in temper-
ature distribution and mean minimum and maximum internal or
external temperature) [36]. Literature reveals seven key criteria that
can be used to further characterise temperature hazards (Table 1),
and each of these have implications for coping, adaptation and risk
management strategies.

Some metrics that are used to characterise one aspect of the tem-
perature hazard ‐ heatwaves ‐ include Excess Heat Factor (EHF) (en-



Table 1
Characterisation of the nature of the threat.

Criteria Sub-criteria Reference(s)

Predictability Regular; Irregular; Outside of collective
experience

[37,38]

Origin of the
threat

Internal; External [37]

Spatial
distribution

Household, community, city, region, nation [39,40]

Temporal
distribution

Timing of the hazard (e.g., early summer,
during holidays, at night) and duration

[40]

Speed of onset Slow; Rapid; Prolonged [39]
Scope and

magnitude of
impact

Scale of population impacted or displaced
(emergency, crisis, disaster, catastrophe)

[40–42]

Number of
threats

Single or multiple stressors [22,32,43,44]
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abling localised comparison of heatwave intensity) [45], heatwave
duration (HWD), heatwave magnitude (HWMt) and heatwave ampli-
tude (HWAt) [46]. These are not resilience indicators, but metrics that
characterise the hazard, in order to evaluate exposure and vulnerabil-
ity. Electricity‐related threats related to temperature are discussed
later in this paper.

3.2. Vulnerability to temperature hazards

A NH approach, such as used in the social sciences, focuses not on
the hazards or risks, but on community vulnerability and resilience to
the risks posed by the hazard [47,48]. The resilience of a community is
influenced by policies and actions to manage the risks, as well as on
the communities’ wider context, changes, and disturbances [49]. Indi-
vidual and societal risk preparedness and risk management actions can
also be influenced by personal, cultural, social and religious beliefs,
such as fatalism, determinism, dependency, hopelessness, nationalism,
collectivism and empowerment [50–53], and by the language used to
convey risk. In 2004 the World Health Organisation (WHO) defined
“natural disaster” as “a serious disruption triggered by a natural haz-
ard causing human, material, economic or environmental losses,
which exceed the ability of those affected to cope” [54]. Note that
the hazard is natural, but the disaster is a consequence of the level
of exposure and vulnerability of people, their structures, and their
activities to natural hazards, and their capacity to cope with natural
hazards. Some governments present a view that a natural hazard
becomes a disaster when it impacts on what we value [55], and there-
fore use the term “natural disaster” when there is significant loss of life
or property. In contrast, some academics argue that linking the terms
“natural” (inferring outside of human control) and “disaster” (inferring
impact on human life and property) can promote fatalism and helpless-
ness, be an excuse for inaction, and limit risk mitigation actions such
emergency
• local effects
• managed with local 

resources

crisis
• local and regional effects 

managed regionally

disaster
• local and regional effect
• managed with local / 

regional / na�onal 
resources

Fig. 3. The DRM continuum of the impact sc
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as better planning of human infrastructure and activities [56]. The
importance of risk mitigation has been highlighted in long‐term insur-
ance industry data that showed that increasing insurance losses were
predominantly driven by higher exposed values (i.e., human property
and human life exposed to higher risk from natural events), rather
than increasing hazards [41]. That report argued that investments in
loss prevention (risk mitigation) were cost effective because they
decrease losses (direct economic and human life costs). The financial
and social benefits of investing in long‐term resilience building (reduc-
ing exposure and vulnerability) were also reported by Cutter [57].
3.3. Managing temperature hazard risk

A DRM approach focuses on understanding and managing risk. The
significance of the consequence of a disruptive event (a multiplication
of likelihood and severity) considers the spatial scale and magnitude of
impact as a continuum (Fig. 3), with each scale having a different range
of effects and being managed with different resources from local,
regional, national, or international authorities. This manner of com-
municating the scale of the impact is used, for example, in health‐,
energy‐, and weather‐related events [41,58]. It was recently evidenced
in the U.S.A. government’s Disaster Declaration [59] in response to the
February 2021 cold‐weather event in Texas that resulted in the failure
of homes, heating appliances, and electricity generation and distribu-
tion systems to provide heating services to residents.

Some aspects of DRM are already embedded into our built environ-
ment, such as building codes, standards, codes of practice, and product
declarations. In addition to general performance criteria such as func-
tionality, robustness, and service life, DRM‐driven criteria are typically
added retrospectively in response to an undesirable impact of a hazard
[11,60]. For example, local building regulations may change as a
result of property damage or loss of life due to earthquakes, storms,
floods, and hurricanes. Similarly, equipment may have risk mitigation
requirements addressing electrical safety, fire safety, or indoor envi-
ronmental quality. Technical equipment and infrastructure may have
requirements to shut down in certain circumstances when safe operat-
ing conditions are close to being breached—for example, when over-
heating is imminent. These are all examples of strategies undertaken
by societies to minimise future loss from these hazards.

This DRM approach, as applied to our built environment, has some
limitations. The temperature hazard presents a significant risk to
humans and the buildings, technologies, and infrastructure on which
they currently rely to provide cooling, and it is widely accepted that
the implications of climate change will need to be reflected in future
building forms, materials, and services [61]. Despite this, the continu-
ing utilisation of historical weather files to determine cooling loads
and thermal comfort goals are arguably inadequate for evaluating
the effectiveness of cooling solutions to prevent or reduce exposure
of humans to overheating in buildings into the future [62]. This prac-
tice does not seem to recognise the dynamic nature of the climate sys-
s

catastrophe
• na�onal effects
• local and regional 

resources impossible or 
inadequate

ex�nc�on event
• could result in loss of all 

human life

ale of consequences of hazards and risks.



Table 2
Characteristics of a resilient cooling system functionality.

Proposed desirable characteristics of a resilient cooling system Reference(s)

Identifies and maps risk, exposure and vulnerability (to
temperature hazards) at different scales

[71,72]

Anticipates (temperature hazards and associated risks and
impacts) and builds a culture of safety and adaptation
through knowledge, innovation and education

[6,8,10,23]

Withstands, copes with, absorbs impacts of, and recovers from
(temperature hazards and associated risks and impacts)

[22,73]

Embraces change and uncertainty (i.e., a continual state of
change, as opposed to a state of equilibrium or “norma”)

[28,74]

Learns from shocks (by enhancing protective factors;
reorganising; implementing diversity of strategies;
increasing the buffer to reduce risk of failure and impact of
failure; creating alternative paths in case of failure; using
flexible decision making; and tracking the transformation
process and outcomes)

[23,35,72,74–76]

Works collaboratively across all sectors (community,
government, institutions) to implement transformational
change

[71,73]

Retains control over the structure and functioning of the
system, including planning for “orderly failure” to retain the
system’s main function (i.e., cooling for people)

[64,77]

Protects human life and health outcomes in daily function as [78]

W. Miller et al. City and Environment Interactions 11 (2021) 100065
tem, and the social and built environment systems within the “resilient
cooling system”. This may be because design and engineering
approaches to the built environment can encompass two different
views of “resilience”, both with limitations: a redundancy approach
that accounts for some future uncertainty (e.g., oversizing components
and spaces) but has no real adaptation to changing conditions; and a
robustness approach that optimises safety, resource consumption and
functionality to a specific brief and set of functions (i.e., a fail‐safe sys-
tem within a defined range of uncertainty) [62–65].

The adequacy of the engineering redundancy and robustness
approaches to our built environment and risk management is being
questioned, driven by (a) more frequent and intense natural hazards,
new hazards, and growing potential for cumulative or concurrent
large‐scale natural hazards; (b) the interconnectedness, interdepen-
dencies, and complex interactions between infrastructure (e.g., essen-
tial services), people, environment, economy and technology and the
reliance of our societies on these connections; (c) increased exposure
and vulnerability of people and assets to natural hazards; and (d) the
intangible, indirect, flow‐on and cumulative effects of impacts that
can trigger long‐term challenges [55]. The following section presents
characteristics of a functioning resilient cooling system, and subsystem
characteristics and indicators.
well as during a temperature hazard and its aftermath (i.e.,
resilience dividend)

Recognises the global nature of the temperature hazard, and
the roles and responsibilities of all stakeholders

[79]

Implements legal and policy frameworks to guide responses
and establish accountability

[79]

Accounts for household learning and coping mechanisms; and
decision-making agency and power

[30]
4. System functionality and subsystem indicators

This section identifies key characteristics that conceivably relate to
the functioning of the proposed model of the resilient cooling system,
and components and indicators relevant to the different subsectors of
the system.
Table 3
Differentiating coping and adapting (derived from [8]).

Coping Adapting

Hazard/Stress Imminent Future
Response

timeframe
Quick response, short
timeframe

Continual, long term

Constraints Knowledge of previous
experiences

Assumptions about the
future

Strategies Previously successful tactics Anticipating change
Goal Protecting the individual Protecting the system
4.1. Characteristics of socio-technical system functionality

One view of system resilience is from the perspective of exposure,
dependent on the characteristics of both the hazard and the system
[66]. It would seem obvious that the core function of a resilient cool-
ing system is to provide cooling at different scales (individual, house-
hold, community, region) [67,68] in such a way that these
stakeholders can “plan and prepare for, absorb, recover from, and
more successfully adapt to” [69] the temperature hazard. A more
nuanced understanding of system functionality (and hence exposure)
can be gained from understanding community disaster resilience from
different domains [70]. Table 2 proposes desirable system functional-
ity characteristics, extracted from domains such as population and
community resilience; humanitarian aid and community development;
and health, financial, food and engineering systems.

An Intergovernmental Panel on Climate Change (IPCC) report [8]
stresses the importance of understanding the difference between “cop-
ing” and “adapting”, words that are frequently used in resilience def-
initions and frameworks. This review indicates that these words
elicit different strategies based on different perceptions of the nature
of the hazard and elicit different response timeframes and strategies
(Table 3). This is evidenced, for example, in multiple existing commu-
nity heatwave response mechanisms that appear to be based on per-
ceptions that heatwaves are “events” that are infrequent and of short
duration; hence, communities are advised to “cope” with the hazard
by reducing their exposure (e.g., retreat to a local swimming pool or
shopping centre) or reduce their vulnerability (e.g., drink more water,
cease strenuous activities, and look out for neighbours). While these
responses to immediate threats are important, one could argue that
the increasing intensity, duration, and magnitude of both heatwaves
and extended periods of hot weather presents our communities with
challenges beyond their ability to withstand and cope.

As indicated by our resilient cooling model, system functionality is
inherently dependent on the antecedent conditions and changes to
these conditions over time. Table 4 shows examples of indicators that
5

could be used to quantify some of these antecedent conditions at dif-
ferent scales, depending on data availability.
4.2. Key characteristics and indicators of subcomponent functionality

4.2.1. People
In the medical profession, stress resistance (of humans) incorpo-

rates the concepts of robustness and resilience, where “robustness” is
defined as the ability to resist deviation from the original state, and
“resilience” as the ability to recover after such deviation [82]. The
human stress response is two‐staged, involving first deviation, then
recovery. Measures of robustness (deviation) include the magnitude
of deviation and the time taken to reach the peak deviation. Measures
of resilience include the time to recover and the completeness of the
recovery. While both robustness and resilience can decline with age,
these authors consider that resilience decline is universal, but robust-
ness decline is not. They suggest that there are differences between
robustness and resilience between men and women (better health
but worse survival in men compared with women) and that robustness
and resilience have different effects on all‐cause mortality. Some com-
ponents of physiological aging (e.g., the slowdown) may universally
contribute to the decline in resilience, but not necessarily in robust-
ness. Blood pressure, for example, may deviate as a result of heat



Table 4
Quantitative indicators for antecedent conditions (derived from Refs.
[23,30,72,80,81]).

Component Indicators of resilience assessment (antecedent
conditions)

Social % of population that is elderly, infirm, or very young
(under 5 years of age)
% of population living in dense urban environment
% of population that is a minority or does not speak the
predominant language

Economic Per-capita income
% of homeownership
Household income, savings, and assets

Institutional Presence of a temperature-hazard mitigation plan (offers
a vision for the future)
Presence of an insurance program (a means to reduce loss
and promote recovery)

Infrastructure Housing typology and density
Emergency services and temporary shelters per 1000
population

Community health and
well-being

Social assistance programs per 1000 population
Health services per 1000 population
Communication services per 1000 population
Environmental Public Health Indicators (EPHIs)

Environment Frequency of loss-causing weather events
% of green space / tree cover / land available for
temperature hazard mitigation (to address the urban heat
island effect)

Table 5
Factors and conditions affecting individual responses to temperature hazards
(derived from Refs. [10,84–97]).

Factors Key conditions

Thermoregulation -
physiological

Range is very narrow (core body temperature 36.8 °C +/-
0.5; heat stroke occurs at 40 °C) and varies between
individuals
The upper range of heat exposure that humans can tolerate
has not been defined, and may not be definable
Heat sensitivity is affected by factors such as obesity, age,
illness, medication, aerobic fitness, gender, and
acclimatisation, with individual influencing factors of
sweat capacity, cardio capacity and blood volume

Thermoregulation -
behavioural

Relies on individual’s perception of body temperature and
an individual’s ability to modify the environment to
reduce body temperature
Older people have less ability to perceive temperature
Relies on personal actions: adjusting clothing (type and
level), reducing activity, moving to a cooler space,
hydrating, wetting the skin
Relies on actions within buildings: operating windows,
shades, or fans to reduce heat or increase air movement to
enhance evaporation from skin
The evaporative effect can be enhanced or restricted by
clothing: not just the insulation level (clo), but also by
fabric breathability and garment fit

Acclimatisation Heat tolerance can be improved due to physiological
adaptation to a new climate
Sudden or extreme heat events can impact on typically
acclimated residents
New arrivals to a region can be unacclimated
People experiencing predominantly air-conditioned
environments can be unacclimated

Vulnerability Physiological and behavioural factors are closely linked,
and the impairment of either of these reduces thermal
tolerance and increases sensitivity to heat
Older people are particularly vulnerable to heat-related
morbidity and mortality
Physical and social vulnerability can limit adaptive
capacity and increase exposure

Table 6
Factors impacting buildings’ ability to protect occupants from overheating.

Building Factors Reference(s)

Housing characteristics (e.g., poor thermal efficiency,
construction type)

[107,108]

Urban heat island effect in urban environments [102,105,107]
Adaptation options available to occupants (e.g., operable

windows)
[102,107]

Internal heat gains [109]
Occupant vulnerability (e.g., age, mobility, pre-existing health

conditions)
[102,107]

Strain on electricity infrastructure [110,111]
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stress, and elderly individuals will likely recover (return to their usual
blood pressure) less quickly and completely than younger individuals.

The indoor environment quality of our buildings often uses a “ther-
mal comfort” criterion – an attempt to determine occupant satisfaction
with the building’s indoor thermal conditions. Physiological, psycho-
logical, and environmental factors influence occupants’ thermal com-
fort over the course of a day and over time [83], but the
temperature hazard requires consideration of more than thermal com-
fort. In the context of heat, an individual’s protective factor can be
interpreted as the capacity of the body to respond to heat. Acclimati-
sation and thermoregulation determine human heat tolerance and vul-
nerability to heat stress [10], requiring consideration of a range of
factors and conditions, as summarised in Table 5.

In practice, some “temperature threshold limits” are being identi-
fied, based on the outdoor temperature at which there is an increase
in ambulance callouts, presentations of patients to doctors and emer-
gency departments, and an increase in deaths. These thresholds are
very location specific, reflecting population and individual acclimati-
sation, cultural practices, and urban and housing design. Location
specific temperature thresholds reported in literature typically corre-
late heat‐related deaths to outdoor ambient temperatures during heat-
wave events. Key findings from this literature are that (i) excess
mortality is higher in tropical climates than in temperate climates
[98,99]; (ii) mortality curves in hot temperature zones are steeper,
with less variation in tolerance, compared with mortality curves in
cold temperature zones [10]; (iii) mortality is influenced by high max-
imum (daytime) and high minimum (night time) temperatures
[93,100]; and (iv) mortality per capita is higher in urban areas
[99,101].

The factors discussed in this section have implications for our
buildings.

4.2.2. Buildings
A key purpose of buildings is to shelter occupants from the outside

environment, providing safety, health, and amenity. This purpose is
reflected in many building codes, but these codes are currently reac-
tive rather than predictive and proactive in response to climate
[11,62]. Existing risk management approaches do not account for sys-
tem vulnerabilities and interdependencies, nor for different levels of
threat probability and severity [27,102]. It is clear that our built envi-
6

ronment is failing in its purpose to shelter occupants from the risks
associated with temperature hazards, as evidence links excess heat‐
related morbidity and mortality to a number of building‐related factors
(Table 6) and there have been calls for more studies in these areas
[95,103]. Poor thermal performance of buildings has arguably con-
tributed to occupants’ behavioural adaptations that have resulted in
a rapid rise in the reliance on air‐conditioning, changing cultural
expectations, and practices regarding thermal comfort [104]. These
changes are placing increased strain on electricity infrastructure
[105,106] and undermining carbon reduction strategies [107].

Climate change will need to be reflected in future building forms,
materials, and services [61]—in particular, by acknowledging that
adaptive opportunities for occupants are as important as the building
envelope, especially if there is a risk of power failure [112]. Electricity
network reliability and capacity are also important considerations in
overheating risk, with suggestions that buildings could provide “cool
retreat” spaces that can be efficiently air‐conditioned during tempera-
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ture hazard events, as opposed to attempting to cool whole buildings
[113]. This solution may be limited to climates with infrequent and
short duration heatwave events, as its effectiveness as a long‐term
strategy in climates with prolonged and frequent temperature hazards
has not yet been evaluated.

Very few studies directly correlated the number of deaths during
temperature‐hazard events to temperatures inside buildings. However,
there is a significant body of work that considers the role the building
envelope plays in protecting people from high outdoor temperatures.
Research has attempted, for example, to quantify overheating risk to
human life [99,110]; to quantify the reduction of impact of overheat-
ing (e.g., lives saved) due to energy efficiency upgrades to buildings
[111]; and to quantify the probability of overheating, based on the
building stock [109]. A fairly comprehensive, if somewhat UK focused,
review of research lessons relating to overheating in buildings can be
found in [114]. A variety of approaches have been used by researchers,
such as modelling [108,112,113], use of future weather files
[115,116], scenario analysis [117], regulation analysis [118], adapta-
tion [119], advanced technologies [120], occupant education [121],
and post‐occupancy evaluation and measurement [122].

Building metrics that could be adapted to quantify some aspect of
“resilient cooling” in buildings are presented in Table 7. These metrics
fall into two broad categories: those that focus on occupant thermal
comfort, and those that focus on protection of occupant health (reduc-
ing the risk of heat stress). The thresholds set by these indicators can
vary depending on the underlying comfort model (steady‐state or
adaptive comfort), the local climatic conditions, and the part of the
building the metric applies to (e.g., bedroom or living room of a
home). Some metrics, such as “hours of safety”, attempt to embrace
both thermal comfort and safety, while others incorporate considera-
tion of one or more of the characteristics of the hazard, such as mag-
nitude, duration, timing, and speed of onset. In a simplistic manner
the thermal resilience of the building could be assessed, for example,
in terms of the number of hours the indoor temperature is above a par-
ticular threshold. This is sometimes expressed as “exceedance hours”,
but that metric does not account for the temporal response of a build-
ing to an extreme heat event, the cumulative effect of the duration of a
moderate heat event, or changes to occupant vulnerability. Even if
some indicators include some cumulative effect, they do not include
the risk to occupants due to successive exposure to indoor overheating.
Successive exposure is more complex to define, as the thresholds them-
selves would need to adapt to the duration of the event and the evolu-
tion of the occupant’s vulnerability. For example, consecutive warm
nights can decrease the sleep capacity of individuals, which increases
their fatigue and therefore their vulnerability. The issue of multiple
hazards is also poorly addressed. A study by Mavrogianni et al.
Table 7
Building resilience indicators relating to temperature.

Term or Metric Reference

Building Heat Performance Index (BHPI) [95]
Building Resilience (during power outage) [127]
Comfort model (static) - Predicted Percentage Dissatisfied (PDD),

Predicted Mean Vote (PMV)
[12]

Comfort model (adaptive) – relative to external mean monthly
temperature or indoor mean ambient temperature

[12,128]

Constants of Proportionality - incorporates seasonal changes [128]
Gain Utilisation Factor (GUF) –annual cooling energy needs [129]
Hours of Safety (free running mode) [130]
Indoor Heat Stress [131]
Occupied Thermal Comfort Percent (occTCP) [132]
Overheating Criterion [124]
Overheating Escalation Factor [117]
Passive Habitability [132]
Passive-Survivability-Winter (PSW) and Summer (PSS) [102]
Thermal Autonomy (TA) – with passive means only [132]
Ventilation Autonomy (VA) – with passive means only [133]
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[123] seems to indicate that (i) existing overheating assessment crite-
ria do not take into account the synergistic effects between summer-
time ventilation behaviour, indoor overheating, and air pollutant
concentration, especially in social housing and free‐running buildings;
(ii) a static single temperature exceedance criteria [124] is simple to
use but does not incorporate acclimatisation and adaptive capacity
of occupants; and (iii) the adaptive external climate dependent criteria
(CIBSE TM52 [125], BS EN 15251 [126]) was considered preferable
for free‐running buildings where occupants have higher adaptive
capacity. The applicability of this criteria in buildings occupied by vul-
nerable individuals, or buildings in hotter climate zones, requires fur-
ther investigation, as the standard is based on a running‐mean outdoor
temperature of up to 30 °C. More research is needed to determine the
limits of adaptive comfort and circumstances under which hybrid cool-
ing approaches may be needed. There is also a need to determine how
to clearly communicate the limits of a building to protect occupants
from the risk of overheating and the circumstances under which it is
assumed occupants will need to rely on (and pay for) mechanical cool-
ing technologies and services.

4.2.3. Cooling technologies
Passive, active and hybrid cooling systems in buildings are engi-

neered systems. The resilience of engineered systems is often articu-
lated using four properties: robustness, rapidity, redundancy, and
resourcefulness [23,35]. Resilience engineering focuses on the safety
and efficiency of system functionality, and the system’s ability to
respond, monitor, learn and anticipate [134]. Resilient active cooling
systems within buildings, by inference, should exhibit the following
operational behaviours:

• Response to regular or irregular disruptions or disturbances
• Monitoring of potential threats and the impact they can have on the
system

• Ability to learn from experience (successes and failures)
• Anticipation of developments, threats, and opportunities into the
future

Reliability engineering is another aspect of systems engineering,
focusing on the aspects of dependability and availability. Cai et al.
[135] espouse that availability comprises of a stable state of function-
ality, the time taken to recover from an event, and the number of
events. This view takes account of one of the characteristics of the
threat (number of events) as mentioned in Table 1, but assumes a
stable state and a return to that state after an event. A different
approach by Mahmoud et al. [40] incorporates temporal and spatial
threat characteristics to evaluate cumulative disruption and recovery
while also acknowledging the reliance on infrastructure, such as hous-
ing and power.

While active cooling appliances are typically supplied with perfor-
mance and reliability data, to the authors’ knowledge, they do not
include consideration of all of the characteristics of the temperature
hazard, the cumulative effect of multiple hazards, characteristics of
the people for whom cooling is provided, or the reliance on infrastruc-
ture to continue functionality. This latter point is particularly impor-
tant for engineered systems that rely on electricity for operation.

4.2.4. Electricity infrastructure
Electricity infrastructure (generators, transmission, and distribu-

tion networks, and distributed energy resources) is particularly impor-
tant in the context of the temperature hazard because much of society
is reliant on electrically driven cooling devices, and the electricity sys-
tem itself is affected by temperature hazards. Similar to buildings and
mechanical cooling devices, electricity systems are designed and rated
to function within defined temperature limits [136]. When those limits
are reached, the assets need to be de‐rated for self‐protection. High
and extreme temperature events are challenging for power grids



Table 9
Distinguishing between robustness and resilience in energy systems (derived
from Refs. [137,139,148,155,156]).

Criteria Robustness Resilience

Target
areas

Robust to a specific class of
failures

System wide resilience,
multifaceted

Event types Predictable High impact rare
Features Stiff (may be brittle and fragile

in some other ways)
Flexible, agile, adaptable, self-
healing

Application Network hardening Network flexibility
Enterprise

focus
Assets Services

Security approach Passive
Active
Value proposition Design
Operation
Key

function
Resistance to change in
predictable events

Flexibility and survivability in
unexpected extreme events
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because (a) the ambient thermal conditions are more severe; (b) power
demand often increases with the increase in ambient temperatures;
and (c) more Ohmic heat is generated and accumulated in the power
grid due to both higher electricity flows and temperature‐induced
increases in wire resistance. This means that the actual loading of elec-
trical assets increases unless there are other control mechanisms,
resources, pathways of energy supply, or load shedding. Increased
loading puts electrical equipment under stress and accelerates aging,
both contributing to the possibility of outages during extreme temper-
ature events.

Within electric power engineering, resilience is often used inter-
changeably with, or seen to be equivalent to, reliability and robustness
[137–140], but the links between these terms depends on the context
and application. Traditionally, reliability in the power system includes
two aspects: adequacy and security [141]. This results in power system
design and operation for “normal conditions” and for abnormal but
foreseen contingencies (low‐impact high‐probability events) [142].
In practice, the security component of the power system is often dealt
with separately—for example, in terms of economic stability in energy
systems [143]. Reliability is used to refer to the probability of no dis-
connection or load shedding [144].

One group of power grid resilience definitions considers reliability
as complementary to resilience, rather than a component of resilience.
For example, the U.S. National Infrastructure Advisory Council (NIAC)
includes robustness, resourcefulness, rapid recovery and adaptability
in its infrastructure resilience model [145], while the Pacific North-
west National Laboratory (PNNL) focuses on stress resistance and
strain compensation [146]. A dominant reason for excluding reliability
from resilience is the perception that a resilient grid would not expe-
rience outages, and reliability is the probability term for outage
[139]. The differences between reliability and resilience in power
engineering are summarised in Table 8.

In contrast, other infrastructure resilience models include reliabil-
ity, allowing for the possibility of power system failure [150] and
hence electricity utility management practices to include reliability
considerations in multiple aspects of the power system (including
stakeholder engagement, communication, supply chain investment,
and services) [151], and strategies to deal with reaction to disturbance
[152].

Resilience and robustness, often used interchangeably in other dis-
ciplines, have different meanings or impacts in electric power system
studies, as summarised in Table 9. One of the key differences is that
robustness often refers to targeted improvement of one defined class
of failures. Such targeted actions, however, may result in increasing
the vulnerability of another part of the electricity system. For example,
a database topological error caused the 2003 US‐Canada Northeast
blackout [139]. The database was implemented to improve visibility
of network, but this robustness improvement in the network caused
Table 8
Distinguishing between reliability and resilience in power engineering studies
(derived from [137,138,147–149]).

Criteria Reliability Resilience

Probability
of
events

High probability Low probability

Impact Low impact High impact
System

states
Evaluates power system states Evaluates power system states

and transition between states
Temporal

features
Static, retrospective Adaptive, ongoing (short and

long term)
Areas of

concern
Concerned with customers’
interruption time or frequency of
interruption

Concerned with prevention,
customers’ interruption and
recovery
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a large‐scale system failure resulting in billions of dollars in losses.
Therefore, a resilient power system may need to be robust in quite a
few areas and be flexible, agile, and adaptable at the same time. The
focus of power system resilience frameworks such as those found in
Refs. [138,151,153–155] appears to remain on risk‐assessment for
high‐impact low‐probability events, with no indication of how power
system design and operation is responding to natural hazards that
may be high‐impact and high‐probability (i.e., increased frequency
extreme heatwaves).

The most used power system indicators relate to reliability
[142,149,154,157], with a few less‐used indicators encompassing sus-
tainability [139,149], security [156], financial impact [149], or redun-
dancy [158]. One resilience indicator combines three capability
criteria (absorptive, restorative, and recovery capabilities) in an
attempt to take into account interdependencies [159], while another
seeks to quantify the relationship between the number of customers
affected by a disruption and the time to restoration [160]. A contrast-
ing perspective to these engineering and network perspectives of resi-
lience in energy systems proposes four sustainability‐related
dimensions: availability, accessibility, affordability and acceptability
[161], displaying a stronger socio‐economic approach. It has also been
highlighted by Molyneaux et al. [142] that there is a need for more
research in the energy sector regarding the characterisation of differ-
ent hazards; the estimation and criticality ranking of each component
in the system; the development of more accurate fragility curves; bet-
ter modelling of the complex process of restoration; and assessment of
interdependencies with other key sectors.

As the climate changes, energy use and peak power demand are
increasing. It may not be sensible to rely on the power grid alone to
provide cooling; a broader systems‐approach encompassing power sys-
tems, buildings and building equipment is required [162]. Methods of
improving resilience within the power system include utilising and
sharing renewable energy [163], leveraging distributed energy
resources [164], incorporating energy storage, and developing active
distribution networks [165]. The diffusion of rooftop solar equipment
in Japan [166] is one example of the role that renewable energy can
play in Building Back Better (a concept incorporated into our model
of a resilient cooling system). The “bouncing forward” concept of
our model is encapsulated in a recent definition of resilience with
regard to modern energy policy: “the adaptive capacity of improving
performance, as a result of learning and adaptation, informed by con-
tinuous change” [29].
5. Discussion and further work

This integrative review has shown that while each sector is in gen-
eral agreement of resilience as a system outcome and process, the sys-
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tem boundaries, and the words used to describe functioning of that
system, are quite varied. The need to fully understand the nature of
the hazard, to protect people from the temperature hazard, and to
appreciate the dependency of people on buildings, technology and
energy infrastructure to provide this protection, lends support to our
proposed model of the resilient cooling system. This conceptual model
has served as a useful tool for evaluating the literature to add clarity to
the concept. By focusing on the characteristics of the hazard and the
system and subsystem functionality, we have demonstrated that it is
not necessary to agree on exact definitions of terms used by different
disciplines. The literature highlights that NH and DRM approaches
provide concepts that enable the integration of both engineering and
non‐engineering perspectives. This integration into a conceptual
model will help enhance the resilience of individuals, communities,
buildings and engineered systems to temperature hazards. Six key
messages from this review could be summarised as follows.

1. Resilient cooling strategies, first and foremost, do not start with
buildings and engineered cooling systems, but must start with indi-
viduals, households, and communities as active agents in managing
their own exposure and vulnerability, and in the selection and
development of indicators that enable them to track progress
towards resilience. This goes hand in hand with building design,
engineered systems, regulations, and policies that need to collec-
tively enhance adaptive capacity, resilience capacity, and the resi-
lience dividend.

2. The natural, social, and built environment conditions in which peo-
ple live are in a state of constant change, not a state of equilibrium.
System resilience encompasses embracing change, adaptive capac-
ity and flexibility, with an eye on implementing strategies that can
benefit society in all situations (present and future), not just in
times of disaster.

3. Resilience needs to be considered at different time and spatial
scales.

4. The characteristics of the threat, the functioning of the system, and
the vulnerabilities of system components need to be clearly under-
stood and communicated to all stakeholders.

5. The performance boundaries of each of the components of the sys-
tem also need to be clearly understood and communicated, and the
system devised in such a way that different components can “fail
safely” without compromising the ability of the system to provide
cooling. This means that there is a high dependence on the role
of buildings – without engineered systems – to provide a level of
safety and protection to occupants.

6. Cooling strategies to enhance resilience should satisfy sustainabil-
ity, energy efficiency, affordability, and greenhouse gas reduction
goals, as well as provide a resilience dividend.

Our examination of socio‐technical multidisciplinary resilience per-
spectives clearly demonstrates that some useful indicators already
exist, within parts of the system, but that a single performance indica-
tor cannot adequately quantify “resilient cooling”. The complexity of
resilience, and of our built environment, means that several indicators
will be required. These indicators need to both quantify and communi-
cate the nature of the threat and the nature (and limitations) of the
cooling strategies. Further work is required to develop indicator sets
relating to heat events, socio‐cultural systems, buildings and their
cooling systems, and energy networks. Evaluation of these candidate
indicators will identify combinations of indicators that can be used
for technical purposes such as benchmarking and measuring progress
[23,167], as well as social purposes such as informing decision making
and improving stakeholder participation [168]. These combinations of
indicators could then be used to evaluate specific cooling technologies
via building simulation and via case study reports.
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